Neuro-Regeneration Reviews | Wang, X., Cao, K., Sun, X., Chen, Y., Duan, Z., Sun, L., Guo, L., Bai, P., Sun, D., Fan, J., He, X., Young, W., Ren, Y. | Macrophages in spinal cord injury: phenotypic and functional change from exposure to myelin debris | 2015 | https://doi.org/10.1002/glia.22774 | Journal Article | https://pubmed.ncbi.nlm.nih.gov/25452166/ |
Neuro-Regeneration Reviews | Assinck, P., Duncan, G. J., Hilton, B. J., Plemel, J. R., Tetzlaff, W. | Cell transplantation therapy for spinal cord injury | 2017 | https://doi.org/10.1038/nn.4541 | Review | https://pubmed.ncbi.nlm.nih.gov/28440805/ |
Neuro-Regeneration Reviews | Kim, Y. H., Ha, K. Y., Kim, S. I. | Spinal Cord Injury and Related Clinical Trials | 2017 | https://doi.org/10.4055/cios.2017.9.1.1 | Review | https://pubmed.ncbi.nlm.nih.gov/28261421/ |
Neuro-Regeneration Reviews | Ahuja, C. S., Nori, S., Tetreault, L., Wilson, J., Kwon, B., Harrop, J., Choi, D., Fehlings, M. G. | Traumatic Spinal Cord Injury-Repair and Regeneration | 2017 | https://doi.org/10.1093/neuros/nyw080 | Review | https://pubmed.ncbi.nlm.nih.gov/28350947/ |
Neuro-Regeneration Reviews | Sofroniew, M. V. | Dissecting spinal cord regeneration | 2018 | https://doi.org/10.1038/s41586-018-0068-4 | Review | https://pubmed.ncbi.nlm.nih.gov/29769671/ |
Neuro-Regeneration Reviews | Badhiwala, J. H., Ahuja, C. S., Fehlings, M. G. | Time is spine: a review of translational advances in spinal cord injury | 2018 | https://doi.org/10.3171/2018.9.spine18682 | Review | https://pubmed.ncbi.nlm.nih.gov/30611186/ |
Neuro-Regeneration Reviews | Bradbury, E. J., Burnside, E. R. | Moving beyond the glial scar for spinal cord repair | 2019 | https://doi.org/10.1038/s41467-019-11707-7 | Review | https://pubmed.ncbi.nlm.nih.gov/31462640/ |
Breakdown Gilal Scar | Cheng, C. H. , Lin, C. T., Lee, M. J., Tsai, M. J., Huang, W. H., Huang, M. C., Lin, Y. L., Chen, C. J., Huang, W. C., Cheng, H. | Local Delivery of High-Dose Chondroitinase ABC in the Sub-Acute Stage Promotes Axonal Outgrowth and Functional Recovery after Complete Spinal Cord Transection | 2015 | https://doi.org/10.1371/journal.pone.0138705 | Journal Article | https://pubmed.ncbi.nlm.nih.gov/26393921/ |
Breakdown Gilal Scar | Wu, D., Klaw, M. C., Connors, T., Kholodilov, N., Burke, R. E., Tom, V. J. | Expressing Constitutively Active Rheb in Adult Neurons after a Complete Spinal Cord Injury Enhances Axonal Regeneration beyond a Chondroitinase-Treated Glial Scar | 2015 | https://doi.org/10.1523/jneurosci.0719-15.2015 | Journal Article | https://pubmed.ncbi.nlm.nih.gov/26245968/ |
Breakdown Gilal Scar | Shinozaki, M., Iwanami, A., Fujiyoshi, K., Tashiro, S., Kitamura, K., Shibata, S., Fujita, H., Nakamura, M., Okano, H. | Combined treatment with chondroitinase ABC and treadmill rehabilitation for chronic severe spinal cord injury in adult rats | 2016 | https://doi.org/10.1016/j.neures.2016.07.005 | Journal Article | https://pubmed.ncbi.nlm.nih.gov/27497528/ |
Breakdown Gilal Scar | Hara, M., Kobayakawa, K., Ohkawa, Y., Kumamaru, H., Yokota, K., Saito, T., Kijima, K., Yoshizaki, S., Harimaya, K., Nakashima, Y., Okada, S. | Interaction of reactive astrocytes with type I collagen induces astrocytic scar formation through the integrin-N-cadherin pathway after spinal cord injury | 2017 | https://doi.org/10.1038/nm.4354 | Journal Article | https://pubmed.ncbi.nlm.nih.gov/28628111/ |
Breakdown Gilal Scar | Janzadeh, A., Sarveazad, A., Yousefifard, M., Dameni, S., Samani, F. S., Mokhtarian, K., Nasirinezhad, F. | Combine effect of Chondroitinase ABC and low level laser (660nm) on spinal cord injury model in adult male rats | 2017 | https://doi.org/10.1016/j.npep.2017.06.002 | Journal Article | https://pubmed.ncbi.nlm.nih.gov/28716393/ |
Breakdown Gilal Scar | Suzuki, H., Ahuja, C. S., Salewski, R. P., Li, L., Satkunendrarajah, K., Nagoshi, N., Shibata, S., Fehlings, M. G. | Neural stem cell mediated recovery is enhanced by Chondroitinase ABC pretreatment in chronic cervical spinal cord injury | 2017 | https://doi.org/10.1371/journal.pone.0182339 | Journal Article | https://pubmed.ncbi.nlm.nih.gov/28771534/ |
Breakdown Gilal Scar | Nori, S., Khazaei, M., Ahuja, C. S., Yokota, K., Ahlfors, J. E., Liu, Y., Wang, J., Shibata, S., Chio, J., Hettiaratchi, M. H., Führmann, T., Shoichet, M. S., Fehlings, M. G. | Human Oligodendrogenic Neural Progenitor Cells Delivered with Chondroitinase ABC Facilitate Functional Repair of Chronic Spinal Cord Injury | 2018 | https://doi.org/10.1016/j.stemcr.2018.10.017 | Journal Article | https://pubmed.ncbi.nlm.nih.gov/30472009/ |
Breakdown Gilal Scar | Raspa, A., Bolla, E., Cuscona, C., Gelain, F. | Feasible stabilization of chondroitinase abc enables reduced astrogliosis in a chronic model of spinal cord injury | 2019 | https://doi.org/10.1111/cns.12984 | Journal Article | https://pubmed.ncbi.nlm.nih.gov/29855151/ |
CSPG Peptide Reduction | Lang, B. T., Cregg, J. M., DePaul, M. A., Tran, A. P., Xu, K., Dyck, S. M., Madalena, K. M., Brown, B. P., Weng, Y. L., Li, S., Karimi-Abdolrezaee, S., Busch, S. A., Shen, Y., Silver, J. | Modulation of the proteoglycan receptor PTPσ promotes recovery after spinal cord injury | 2015 | https://doi.org/10.1038/nature13974 | Journal Article | https://pubmed.ncbi.nlm.nih.gov/25470046/ |
CSPG Peptide Reduction | Zhang, R., Wu, Y., Xie, F., Zhong, Y., Wang, Y., Xu, M., Feng, J., Charish, J., Monnier, P. P., Qin, X. | RGMa mediates reactive astrogliosis and glial scar formation through TGFβ1/Smad2/3 signaling after stroke | 2018 | https://doi.org/10.1038/s41418-018-0058-y | Journal Article | https://pubmed.ncbi.nlm.nih.gov/29396549/ |
Increase Axonal Growth | Li, G., Che, M. T., Zhang, K., Qin, L. N., Zhang, Y. T., Chen, R. Q., Rong, L. M., Liu, S., Ding, Y., Shen, H. Y., Long, S. M., Wu, J. L., Ling, E. A., Zeng, Y. S. | Graft of the NT-3 persistent delivery gelatin sponge scaffold promotes axon regeneration, attenuates inflammation, and induces cell migration in rat and canine with spinal cord injury | 2016 | https://doi.org/10.1016/j.biomaterials.2015.11.059 | Journal Article | https://pubmed.ncbi.nlm.nih.gov/26774562/ |
Increase Axonal Growth | Chen, C., Zhao, M. L., Zhang, R. K. , Lu, G., Zhao, C. Y., Fu, F., Sun, H. T., Zhang, S., Tu, Y., Li, X. H. | Collagen/heparin sulfate scaffolds fabricated by a 3D bioprinter improved mechanical properties and neurological function after spinal cord injury in rats | 2017 | https://doi.org/10.1002/jbm.a.36011 | Journal Article | https://pubmed.ncbi.nlm.nih.gov/28120511/ |
Increase Axonal Growth | Zhang, Q., Nguyen, P. D., Shi, S., Burrell, J. C., Cullen, D. K., Le, A. D. | 3D bio-printed scaffold-free nerve constructs with human gingiva-derived mesenchymal stem cells promote rat facial nerve regeneration | 2018 | https://doi.org/10.1038/s41598-018-24888-w | Journal Article | https://pubmed.ncbi.nlm.nih.gov/29700345/ |
Increase Axonal Growth | Jiang, J., Liu, X., Chen, H., Dai, C., Niu, X., Dai, L., Chen, X., Zhang, S. | 3D printing collagen/heparin sulfate scaffolds boost neural network reconstruction and motor function recovery after traumatic brain injury in canine | 2020 | https://doi.org/10.1039/d0bm01116a | Journal Article | https://pubmed.ncbi.nlm.nih.gov/33026366/ |
Increase Axonal Growth | Zhang, Y., Li, L., Mu, J., Chen, J., Feng, S., Gao, J. | Implantation of a functional TEMPO-hydrogel induces recovery from rat spinal cord transection through promoting nerve regeneration and protecting bladder tissue | 2020 | https://doi.org/10.1039/c9bm01530b | Journal Article | https://pubmed.ncbi.nlm.nih.gov/31989134/ |
Growth-promoting cells | Ruschel, J., Hellal, F., Flynn, K. C., Dupraz, S., Elliott, D. A., Tedeschi, A., Bates, M., Sliwinski, C., Brook, G., Dobrindt, K., Peitz, M., Brüstle, O., Norenberg, M. D., Blesch, A., Weidner, N., Bunge, M. B., Bixby, J. L., Bradke, F. | Axonal regeneration. Systemic administration of epothilone B promotes axon regeneration after spinal cord injury
| 2015 | https://doi.org/10.1126/science.aaa2958 | Journal Article | https://pubmed.ncbi.nlm.nih.gov/25765066/ |
Growth-promoting cells | He, M., Ding, Y., Chu, C., Tang, J., Xiao, Q., Luo, Z. G. | Autophagy induction stabilizes microtubules and promotes axon regeneration after spinal cord injury | 2016 | https://doi.org/10.1073/pnas.1611282113 | Journal Article | https://pubmed.ncbi.nlm.nih.gov/27638205/ |
Growth-promoting cells | Tedeschi, A., Dupraz, S., Laskowski, C. J., Xue, J., Ulas, T., Beyer, M., Schultze, J. L., Bradke, F. | The Calcium Channel Subunit Alpha2delta2 Suppresses Axon Regeneration in the Adult CNS | 2016 | https://doi.org/10.1016/j.neuron.2016.09.026 | Journal Article | https://pubmed.ncbi.nlm.nih.gov/27720483/ |
Growth-promoting cells | Assinck, P., Duncan, G. J., Plemel, J. R., Lee, M. J., Stratton, J. A., Manesh, S. B., Liu, J., Ramer, L. M., Kang, S. H., Bergles, D. E., Biernaskie, J., Tetzlaff, W. | Myelinogenic Plasticity of Oligodendrocyte Precursor Cells following Spinal Cord Contusion Injury | 2017 | https://doi.org/10.1523/jneurosci.2409-16.2017 | Journal Article | https://pubmed.ncbi.nlm.nih.gov/28760862/ |
Growth-promoting cells | Dun, X. P., Parkinson, D. B. | Role of Netrin-1 Signaling in Nerve Regeneration | 2017 | https://doi.org/10.3390/ijms18030491 | Journal Article | https://pubmed.ncbi.nlm.nih.gov/28245592/ |
Growth-promoting cells | Cerqueira, S. R., Lee, Y. S., Cornelison, R. C., Mertz, M. W., Wachs, R. A., Schmidt, C.E., Bunge, M. B. | Decellularized peripheral nerve supports Schwann cell transplants and axon growth following spinal cord injury | 2018 | https://doi.org/10.1016/j.biomaterials.2018.05.049 | Journal Article | https://pubmed.ncbi.nlm.nih.gov/29929081/ |
Growth-promoting cells | Gaudet, A. D., Fonken, L. K. | Glial Cells Shape Pathology and Repair After Spinal Cord Injury | 2018 | https://doi.org/10.1007/s13311-018-0630-7 | Journal Article | https://pubmed.ncbi.nlm.nih.gov/29728852/ |
Growth-promoting cells | Guo, C., Cho, K. S., Li, Y., Tchedre, K., Antolik, C., Ma, J., Chew, J., Utheim, T. P., Huang, X. A., Yu, H., Malik, M. T. A., Anzak, N., Chen, D. F. | IGFBPL1 Regulates Axon Growth through IGF-1-mediated Signaling Cascades | 2018 | https://doi.org/10.1038/s41598-018-20463-5 | Journal Article | https://pubmed.ncbi.nlm.nih.gov/29391597/ |
Growth-promoting cells | Lei, F., He, W., Tian, X., Zhou, Q., Zheng, L., Kang, J., Song, Y., Feng, D. | GSK-3 Inhibitor Promotes Neuronal Cell Regeneration and Functional Recovery in a Rat Model of Spinal Cord Injury | 2019 | https://doi.org/10.1155/2019/9628065 | Journal Article | https://pubmed.ncbi.nlm.nih.gov/31467921/ |
Growth-promoting cells | Bosiacki, M., Gąssowska-Dobrowolska, M., Kojder, K., Fabiańsk, M., Jeżewski, D., Gutowska, I., Lubkowska, A. | Perineuronal Nets and Their Role in Synaptic Homeostasis | 2019 | https://doi.org/10.3390/ijms20174108 | Review | https://pubmed.ncbi.nlm.nih.gov/31443560/ |
Growth factors | Chen, J., Wang, Z., Zhen, Z. M., Chen, Y., Khor, S., Shi, K. S., He, Z. L., Wang, Q., Zhao, Y., Zhang , H., Li, X., Li, J., Yin, J., Wang, X., Xiao, J. | Neuron and microglia/macrophage-derived FGF10 activate neuronal FGFR2/PI3K/Akt signaling and inhibit microglia/macrophages TLR4/NF-κB-dependent neuroinflammation to improve functional recovery after spinal cord injury | 2017 | https://doi.org/10.1038/cddis.2017.490 | Journal Article | https://pubmed.ncbi.nlm.nih.gov/28981091/ |
Growth factors | Li, J., Wang, Q., Cai, H., He, Z., Wang, H., Chen, J., Zheng, Z., Yin, J., Liao, Z., Xu, H., Xiao, J., Gong, F. | FGF1 improves functional recovery through inducing PRDX1 to regulate autophagy and anti-ROS after spinal cord injury | 2018 | https://doi.org/10.1111/jcmm.13566 | Journal Article | https://pubmed.ncbi.nlm.nih.gov/29512938/ |
Growth factors | Galvao, J., Iwao, K., Apara, A., Wang, Y., Ashouri, M., Shah, T. N., Blackmore, M., Kunzevitzky, N. J., Moore, D. L., Goldberg, J. L. | The Krüppel-Like Factor Gene Target Dusp14 Regulates Axon Growth and Regeneration | 2018 | https://doi.org/10.1167/iovs.17-23319 | Journal Article | https://pubmed.ncbi.nlm.nih.gov/29860460/ |
Growth factors | Anderson, M. A., O'Shea, T. M., Burda, J. E., Ao, Y., Barlatey, S. B., Bernstein, A. M., Kim, J. H., James, N. D., Rogers, A., Kato, B., Wollenberg, A. L., Kawaguchi, R., Coppola, G., Wang, C., Deming, T. J., He, Z., Courtine, G., Sofroniew, M. V. | Required growth facilitators propel axon regeneration across complete spinal cord injury | 2018 | https://doi.org/10.1038/s41586-018-0467-6 | Journal Article | https://pubmed.ncbi.nlm.nih.gov/30158698/ |
Growth factors | Guo, S., Perets, N., Betzer, O., Ben-Shaul, S., Sheinin, A., Michaelevski, I., Popovtzer, R., Offen, D., Levenberg, S. | Intranasal Delivery of Mesenchymal Stem Cell Derived Exosomes Loaded with Phosphatase and Tensin Homolog siRNA Repairs Complete Spinal Cord Injury | 2019 | https://doi.org/10.1021/acsnano.9b01892 | Journal Article | https://pubmed.ncbi.nlm.nih.gov/31454225/ |
Growth factors | Seira, O., Liu, J., Assinck, P., Ramer, M., Tetzlaff, W. | KIF2A characterization after spinal cord injury | 2019 | https://doi.org/10.1007/s00018-019-03116-2 | Journal Article | https://pubmed.ncbi.nlm.nih.gov/31041455/ |
Gene therapy | Stewart, A. N., Matyas, J. J., Welchko, R. M., Goldsmith, A. D., Zeiler, S. E., Hochgeschwender, U., Lu, M., Nan, Z., Rossignol, J., Dunbar, G. L. | SDF-1 overexpression by mesenchymal stem cells enhances GAP-43-positive axonal growth following spinal cord injury | 2017 | https://doi.org/10.3233/rnn-160678 | Journal Article | https://pubmed.ncbi.nlm.nih.gov/28598857/ |
Gene therapy | Smith, D. R., Margul, D. J., Dumont, C. M., Carlson, M. A., Munsell, M. K., Johnson, M., Cummings, B. J., Anderson, A. J., Shea, L. D. | Combinatorial lentiviral gene delivery of pro-oligodendrogenic factors for improving myelination of regenerating axons after spinal cord injury | 2019 | https://doi.org/10.1002/bit.26838 | Journal Article | https://pubmed.ncbi.nlm.nih.gov/30229864/ |
Gene therapy | Li, Z., Wu, F., Xu, D., Zhi, Z., Xu, G. | Inhibition of TREM1 reduces inflammation and oxidative stress after spinal cord injury (SCI) associated with HO-1 expressions | 2019 | https://doi.org/10.1016/j.biopha.2018.08.159 | Journal Article | https://pubmed.ncbi.nlm.nih.gov/30551457/ |
Gene therapy | Lu, P., Gomes-Leal, W., Selin Anil, S., Dobkins, G., Huie, J. R., Ferguson, A. R., Graham, L., Tuszynski, M. | Origins of Neural Progenitor Cell-Derived Axons Projecting Caudally after Spinal Cord Injury | 2019 | https://doi.org/10.1016/j.stemcr.2019.05.011 | Journal Article | https://pubmed.ncbi.nlm.nih.gov/31204300/ |
Gene therapy | Shiga, Y., Shiga, A., Mesci, P., Kwon, H., Brifault, C., Kim, J. H., Jeziorski, J. J., Nasamran, C., Ohtori, S., Muotri, A. R., Gonias, S. L., Campana, W. M. | Tissue-type plasminogen activator-primed human iPSC-derived neural progenitor cells promote motor recovery after severe spinal cord injury | 2019 | https://doi.org/10.1038/s41598-019-55132-8 | Journal Article | https://pubmed.ncbi.nlm.nih.gov/31848365/ |
Glycoproteins | Chen, J., Lee, H. J., Jakovcevski, I., Shah, R., Bhagat, N., Loers, G., Liu, H. Y., Meiners, S., Taschenberger, G., Kügler, S., Irintchev, A., Schachner, M.
| The Extracellular Matrix Glycoprotein Tenascin-C Is Beneficial for Spinal Cord Regeneration | 2010 | https://doi.org/10.1038/mt.2010.133 | Journal Article | https://www.cell.com/molecular-therapy-family/molecular-therapy/fulltext/S1525-0016(16)30860-7 |
Glycoproteins | Lee, J. K., Zheng, B. | Role of myelin-associated inhibitors in axonal repair after spinal cord injury | 2012 | https://doi.org/10.1016/j.expneurol.2011.05.001 | Review | https://pubmed.ncbi.nlm.nih.gov/21596039/ |
Glycoproteins | Dong, L., Dong, G., Cao,J., Zhang, J. | Association of α2-HS Glycoprotein with Neurogenic Heterotopic Ossification in Patients with Spinal Cord Injury | 2017 | https://dx.doi.org/10.12659%2FMSM.904626 | Journal Article | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5699169/ |
Glycoproteins | Chen, C., Bai, G. C., Hong-Liang Jin, Lei, K., Li, K. X. | Local injection of bone morphogenetic protein 7 promotes neuronal regeneration and motor function recovery after acute spinal cord injury | 2018 | https://dx.doi.org/10.4103%2F1673-5374.233449 | Journal Article | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6022460/ |
NOGO A | Wang, J. W., Yang, J. F., Ma, Y., Hua, Z., Guo, Y., Gu, X. L., Zhang, Y. F. | Nogo-A expression dynamically varies after spinal cord injury | 2015 | https://doi.org/10.4103/1673-5374.152375 | Journal Article | https://pubmed.ncbi.nlm.nih.gov/25883620/ |
NOGO A | Liu, G. M., Luo, Y. G., Li, J., Xu, K. | Knockdown of Nogo gene by short hairpin RNA interference promotes functional recovery of spinal cord injury in a rat model | 2016 | https://doi.org/10.3892/mmr.2016.5072 | Journal Article | https://pubmed.ncbi.nlm.nih.gov/27035338/ |
NOGO A | Chen, K., Marsh, B. C., Cowan, M., Al'Joboori, Y. D., Gigout, S., Smith, C. C., Messenger, N., Gamper, N., Schwab, M. E., Ichiyama, R. M. | Sequential therapy of anti-Nogo-A antibody treatment and treadmill training leads to cumulative improvements after spinal cord injury in rats | 2017 | https://doi.org/10.1016/j.expneurol.2017.03.012 | Journal Article | https://pubmed.ncbi.nlm.nih.gov/28341461/ |
NOGO A | Kucher, K., Johns, D., Maier, D., Abel, R., Badke, A., Baron, H., Thietje, R., Casha, S., Meindl, R., Gomez-Mancilla, B., Pfister, C., Rupp, R., Weidner, N., Mir, A., Schwab, M. E., Curt, A. | First-in-Man Intrathecal Application of Neurite Growth-Promoting Anti-Nogo-A Antibodies in Acute Spinal Cord Injury | 2018 | https://doi.org/10.1177/1545968318776371 | Clinical Trial | https://pubmed.ncbi.nlm.nih.gov/29869587/ |
NOGO A | Wang, Y., Sun, J. C., Wang, H. B., Xu, X. M., Yang, Y., Kong, Q. J., Shi, J. G. | Effects of MicroRNA-494 on Astrocyte Proliferation and Synaptic Remodeling in the Spinal Cord of a Rat Model of Chronic Compressive Spinal Cord Injury by Regulating the Nogo/Ngr Signaling Pathway | 2018 | https://doi.org/10.1159/000491959 | Journal Article | https://pubmed.ncbi.nlm.nih.gov/30036869/ |
NOGO A | Schneider, M. P., Sartori, A. M., Ineichen, B. V., Moors, S., Engmann A. K., Hofer, A. S., Weinmann, O., Kessler, T. M., Schwab, M. E. | Anti-Nogo-A Antibodies As a Potential Causal Therapy for Lower Urinary Tract Dysfunction after Spinal Cord Injury | 2019 | https://doi.org/10.1523/jneurosci.3155-18.2019 | Journal Article | https://pubmed.ncbi.nlm.nih.gov/30902870/ |
NOGO A | Xiao, W. P., Ding, L. L. Q., Min, Y. J., Yang, H. Y., Yao, H. H., Sun, J., Zhou, X., Zeng, X. B., Yu, W. | Electroacupuncture Promoting Axonal Regeneration in Spinal Cord Injury Rats via Suppression of Nogo/NgR and Rho/ROCK Signaling Pathway | 2019 | https://doi.org/10.2147/ndt.s216874 | Journal Article | https://pubmed.ncbi.nlm.nih.gov/31997879/ |
NOGO A | Sekine, Y., Lindborg, J. A., Strittmatter, S. M. | A proteolytic C-terminal fragment of Nogo-A (reticulon-4A) is released in exosomes and potently inhibits axon regeneration | 2020 | https://doi.org/10.1074/jbc.ra119.009896 | Journal Article | https://pubmed.ncbi.nlm.nih.gov/31748413/ |
Oligodendrocytes | Gensel, J. C., Zhang, B. | Macrophage activation and its role in repair and pathology after spinal cord injury | 2015 | https://doi.org/10.1016/j.brainres.2014.12.045 | Review | https://pubmed.ncbi.nlm.nih.gov/25578260/ |
Oligodendrocytes | Ohri, S. S., Bankston, A. N., Mullins, S. A., Liu, Y., Andres, K. R., Beare, J. E., Howard, R. M., Burke, D. A., Riegler, A. S., Smith, A. E., Hetman, M., Whittemore, S. R. | Blocking Autophagy in Oligodendrocytes Limits Functional Recovery after Spinal Cord Injury | 2018 | https://doi.org/10.1523/jneurosci.0679-17.2018 | Journal Article | https://pubmed.ncbi.nlm.nih.gov/29793971/ |
Oligodendrocytes | Fan, H., Tang, H. B., Shan, L. Q., Liu, S. C., Huang, D. G., Chen, X., Chen, Z., Yang, M., Yin, X. H., Yang, H., Hao, D. J. | Quercetin prevents necroptosis of oligodendrocytes by inhibiting macrophages/microglia polarization to M1 phenotype after spinal cord injury in rats | 2019 | https://doi.org/10.1186/s12974-019-1613-2 | Journal Article | https://pubmed.ncbi.nlm.nih.gov/31699098/ |