TopicAuthorTitleYearDOITypeLink
Neuro-Regeneration ReviewsWang, X., Cao, K., Sun, X., Chen, Y., Duan, Z., Sun, L., Guo, L., Bai, P., Sun, D., Fan, J., He, X., Young, W., Ren, Y.Macrophages in spinal cord injury: phenotypic and functional change from exposure to myelin debris2015https://doi.org/10.1002/glia.22774Journal Articlehttps://pubmed.ncbi.nlm.nih.gov/25452166/
Neuro-Regeneration ReviewsAssinck, P., Duncan, G. J., Hilton, B. J., Plemel, J. R., Tetzlaff, W.Cell transplantation therapy for spinal cord injury2017https://doi.org/10.1038/nn.4541Reviewhttps://pubmed.ncbi.nlm.nih.gov/28440805/
Neuro-Regeneration ReviewsKim, Y. H., Ha, K. Y., Kim, S. I.Spinal Cord Injury and Related Clinical Trials2017https://doi.org/10.4055/cios.2017.9.1.1Reviewhttps://pubmed.ncbi.nlm.nih.gov/28261421/
Neuro-Regeneration ReviewsAhuja, C. S., Nori, S., Tetreault, L., Wilson, J., Kwon, B., Harrop, J., Choi, D., Fehlings, M. G.Traumatic Spinal Cord Injury-Repair and Regeneration2017https://doi.org/10.1093/neuros/nyw080Reviewhttps://pubmed.ncbi.nlm.nih.gov/28350947/
Neuro-Regeneration ReviewsSofroniew, M. V.Dissecting spinal cord regeneration2018https://doi.org/10.1038/s41586-018-0068-4Reviewhttps://pubmed.ncbi.nlm.nih.gov/29769671/
Neuro-Regeneration ReviewsBadhiwala, J. H., Ahuja, C. S., Fehlings, M. G.Time is spine: a review of translational advances in spinal cord injury2018https://doi.org/10.3171/2018.9.spine18682Reviewhttps://pubmed.ncbi.nlm.nih.gov/30611186/
Neuro-Regeneration ReviewsBradbury, E. J., Burnside, E. R.Moving beyond the glial scar for spinal cord repair2019https://doi.org/10.1038/s41467-019-11707-7Reviewhttps://pubmed.ncbi.nlm.nih.gov/31462640/
Breakdown Gilal ScarCheng, C. H. , Lin, C. T., Lee, M. J., Tsai, M. J., Huang, W. H., Huang, M. C., Lin, Y. L., Chen, C. J., Huang, W. C., Cheng, H.Local Delivery of High-Dose Chondroitinase ABC in the Sub-Acute Stage Promotes Axonal Outgrowth and Functional Recovery after Complete Spinal Cord Transection2015https://doi.org/10.1371/journal.pone.0138705Journal Articlehttps://pubmed.ncbi.nlm.nih.gov/26393921/
Breakdown Gilal ScarWu, D., Klaw, M. C., Connors, T., Kholodilov, N., Burke, R. E., Tom, V. J.Expressing Constitutively Active Rheb in Adult Neurons after a Complete Spinal Cord Injury Enhances Axonal Regeneration beyond a Chondroitinase-Treated Glial Scar2015https://doi.org/10.1523/jneurosci.0719-15.2015Journal Articlehttps://pubmed.ncbi.nlm.nih.gov/26245968/
Breakdown Gilal ScarShinozaki, M., Iwanami, A., Fujiyoshi, K., Tashiro, S., Kitamura, K., Shibata, S., Fujita, H., Nakamura, M., Okano, H.Combined treatment with chondroitinase ABC and treadmill rehabilitation for chronic severe spinal cord injury in adult rats2016https://doi.org/10.1016/j.neures.2016.07.005Journal Articlehttps://pubmed.ncbi.nlm.nih.gov/27497528/
Breakdown Gilal ScarHara, M., Kobayakawa, K., Ohkawa, Y., Kumamaru, H., Yokota, K., Saito, T., Kijima, K., Yoshizaki, S., Harimaya, K., Nakashima, Y., Okada, S.Interaction of reactive astrocytes with type I collagen induces astrocytic scar formation through the integrin-N-cadherin pathway after spinal cord injury2017https://doi.org/10.1038/nm.4354Journal Articlehttps://pubmed.ncbi.nlm.nih.gov/28628111/
Breakdown Gilal ScarJanzadeh, A., Sarveazad, A., Yousefifard, M., Dameni, S., Samani, F. S., Mokhtarian, K., Nasirinezhad, F. Combine effect of Chondroitinase ABC and low level laser (660nm) on spinal cord injury model in adult male rats2017https://doi.org/10.1016/j.npep.2017.06.002Journal Articlehttps://pubmed.ncbi.nlm.nih.gov/28716393/
Breakdown Gilal ScarSuzuki, H., Ahuja, C. S., Salewski, R. P., Li, L., Satkunendrarajah, K., Nagoshi, N., Shibata, S., Fehlings, M. G.Neural stem cell mediated recovery is enhanced by Chondroitinase ABC pretreatment in chronic cervical spinal cord injury2017https://doi.org/10.1371/journal.pone.0182339Journal Articlehttps://pubmed.ncbi.nlm.nih.gov/28771534/
Breakdown Gilal ScarNori, S., Khazaei, M., Ahuja, C. S., Yokota, K., Ahlfors, J. E., Liu, Y., Wang, J., Shibata, S., Chio, J., Hettiaratchi, M. H., Führmann, T., Shoichet, M. S., Fehlings, M. G.Human Oligodendrogenic Neural Progenitor Cells Delivered with Chondroitinase ABC Facilitate Functional Repair of Chronic Spinal Cord Injury2018https://doi.org/10.1016/j.stemcr.2018.10.017Journal Articlehttps://pubmed.ncbi.nlm.nih.gov/30472009/
Breakdown Gilal ScarRaspa, A., Bolla, E., Cuscona, C., Gelain, F.Feasible stabilization of chondroitinase abc enables reduced astrogliosis in a chronic model of spinal cord injury2019https://doi.org/10.1111/cns.12984Journal Articlehttps://pubmed.ncbi.nlm.nih.gov/29855151/
CSPG Peptide ReductionLang, B. T., Cregg, J. M., DePaul, M. A., Tran, A. P., Xu, K., Dyck, S. M., Madalena, K. M., Brown, B. P., Weng, Y. L., Li, S., Karimi-Abdolrezaee, S., Busch, S. A., Shen, Y., Silver, J.Modulation of the proteoglycan receptor PTPσ promotes recovery after spinal cord injury2015https://doi.org/10.1038/nature13974Journal Articlehttps://pubmed.ncbi.nlm.nih.gov/25470046/
CSPG Peptide ReductionZhang, R., Wu, Y., Xie, F., Zhong, Y., Wang, Y., Xu, M., Feng, J., Charish, J., Monnier, P. P., Qin, X. RGMa mediates reactive astrogliosis and glial scar formation through TGFβ1/Smad2/3 signaling after stroke2018https://doi.org/10.1038/s41418-018-0058-yJournal Articlehttps://pubmed.ncbi.nlm.nih.gov/29396549/
Increase Axonal GrowthLi, G., Che, M. T., Zhang, K., Qin, L. N., Zhang, Y. T., Chen, R. Q., Rong, L. M., Liu, S., Ding, Y., Shen, H. Y., Long, S. M., Wu, J. L., Ling, E. A., Zeng, Y. S.Graft of the NT-3 persistent delivery gelatin sponge scaffold promotes axon regeneration, attenuates inflammation, and induces cell migration in rat and canine with spinal cord injury2016https://doi.org/10.1016/j.biomaterials.2015.11.059Journal Articlehttps://pubmed.ncbi.nlm.nih.gov/26774562/
Increase Axonal GrowthChen, C., Zhao, M. L., Zhang, R. K. , Lu, G., Zhao, C. Y., Fu, F., Sun, H. T., Zhang, S., Tu, Y., Li, X. H.Collagen/heparin sulfate scaffolds fabricated by a 3D bioprinter improved mechanical properties and neurological function after spinal cord injury in rats2017https://doi.org/10.1002/jbm.a.36011Journal Articlehttps://pubmed.ncbi.nlm.nih.gov/28120511/
Increase Axonal GrowthZhang, Q., Nguyen, P. D., Shi, S., Burrell, J. C., Cullen, D. K., Le, A. D. 3D bio-printed scaffold-free nerve constructs with human gingiva-derived mesenchymal stem cells promote rat facial nerve regeneration2018https://doi.org/10.1038/s41598-018-24888-wJournal Articlehttps://pubmed.ncbi.nlm.nih.gov/29700345/
Increase Axonal GrowthJiang, J., Liu, X., Chen, H., Dai, C., Niu, X., Dai, L., Chen, X., Zhang, S.3D printing collagen/heparin sulfate scaffolds boost neural network reconstruction and motor function recovery after traumatic brain injury in canine2020https://doi.org/10.1039/d0bm01116aJournal Articlehttps://pubmed.ncbi.nlm.nih.gov/33026366/
Increase Axonal GrowthZhang, Y., Li, L., Mu, J., Chen, J., Feng, S., Gao, J.Implantation of a functional TEMPO-hydrogel induces recovery from rat spinal cord transection through promoting nerve regeneration and protecting bladder tissue2020https://doi.org/10.1039/c9bm01530bJournal Articlehttps://pubmed.ncbi.nlm.nih.gov/31989134/
Growth-promoting cellsRuschel, J., Hellal, F., Flynn, K. C., Dupraz, S., Elliott, D. A., Tedeschi, A., Bates, M., Sliwinski, C., Brook, G., Dobrindt, K., Peitz, M., Brüstle, O., Norenberg, M. D., Blesch, A., Weidner, N., Bunge, M. B., Bixby, J. L., Bradke, F.Axonal regeneration. Systemic administration of epothilone B promotes axon regeneration after spinal cord injury
2015https://doi.org/10.1126/science.aaa2958Journal Articlehttps://pubmed.ncbi.nlm.nih.gov/25765066/
Growth-promoting cellsHe, M., Ding, Y., Chu, C., Tang, J., Xiao, Q., Luo, Z. G.Autophagy induction stabilizes microtubules and promotes axon regeneration after spinal cord injury2016https://doi.org/10.1073/pnas.1611282113Journal Articlehttps://pubmed.ncbi.nlm.nih.gov/27638205/
Growth-promoting cellsTedeschi, A., Dupraz, S., Laskowski, C. J., Xue, J., Ulas, T., Beyer, M., Schultze, J. L., Bradke, F.The Calcium Channel Subunit Alpha2delta2 Suppresses Axon Regeneration in the Adult CNS2016https://doi.org/10.1016/j.neuron.2016.09.026Journal Articlehttps://pubmed.ncbi.nlm.nih.gov/27720483/
Growth-promoting cellsAssinck, P., Duncan, G. J., Plemel, J. R., Lee, M. J., Stratton, J. A., Manesh, S. B., Liu, J., Ramer, L. M., Kang, S. H., Bergles, D. E., Biernaskie, J., Tetzlaff, W.Myelinogenic Plasticity of Oligodendrocyte Precursor Cells following Spinal Cord Contusion Injury2017https://doi.org/10.1523/jneurosci.2409-16.2017Journal Articlehttps://pubmed.ncbi.nlm.nih.gov/28760862/
Growth-promoting cellsDun, X. P., Parkinson, D. B.Role of Netrin-1 Signaling in Nerve Regeneration2017https://doi.org/10.3390/ijms18030491Journal Articlehttps://pubmed.ncbi.nlm.nih.gov/28245592/
Growth-promoting cellsCerqueira, S. R., Lee, Y. S., Cornelison, R. C., Mertz, M. W., Wachs, R. A., Schmidt, C.E., Bunge, M. B.Decellularized peripheral nerve supports Schwann cell transplants and axon growth following spinal cord injury2018https://doi.org/10.1016/j.biomaterials.2018.05.049Journal Articlehttps://pubmed.ncbi.nlm.nih.gov/29929081/
Growth-promoting cellsGaudet, A. D., Fonken, L. K. Glial Cells Shape Pathology and Repair After Spinal Cord Injury2018https://doi.org/10.1007/s13311-018-0630-7Journal Articlehttps://pubmed.ncbi.nlm.nih.gov/29728852/
Growth-promoting cellsGuo, C., Cho, K. S., Li, Y., Tchedre, K., Antolik, C., Ma, J., Chew, J., Utheim, T. P., Huang, X. A., Yu, H., Malik, M. T. A., Anzak, N., Chen, D. F.IGFBPL1 Regulates Axon Growth through IGF-1-mediated Signaling Cascades2018https://doi.org/10.1038/s41598-018-20463-5Journal Articlehttps://pubmed.ncbi.nlm.nih.gov/29391597/
Growth-promoting cellsLei, F., He, W., Tian, X., Zhou, Q., Zheng, L., Kang, J., Song, Y., Feng, D.GSK-3 Inhibitor Promotes Neuronal Cell Regeneration and Functional Recovery in a Rat Model of Spinal Cord Injury2019https://doi.org/10.1155/2019/9628065Journal Articlehttps://pubmed.ncbi.nlm.nih.gov/31467921/
Growth-promoting cellsBosiacki, M., Gąssowska-Dobrowolska, M., Kojder, K., Fabiańsk, M., Jeżewski, D., Gutowska, I., Lubkowska, A.Perineuronal Nets and Their Role in Synaptic Homeostasis2019https://doi.org/10.3390/ijms20174108Reviewhttps://pubmed.ncbi.nlm.nih.gov/31443560/
Growth factorsChen, J., Wang, Z., Zhen, Z. M., Chen, Y., Khor, S., Shi, K. S., He, Z. L., Wang, Q., Zhao, Y., Zhang , H., Li, X., Li, J., Yin, J., Wang, X., Xiao, J.Neuron and microglia/macrophage-derived FGF10 activate neuronal FGFR2/PI3K/Akt signaling and inhibit microglia/macrophages TLR4/NF-κB-dependent neuroinflammation to improve functional recovery after spinal cord injury2017https://doi.org/10.1038/cddis.2017.490Journal Articlehttps://pubmed.ncbi.nlm.nih.gov/28981091/
Growth factorsLi, J., Wang, Q., Cai, H., He, Z., Wang, H., Chen, J., Zheng, Z., Yin, J., Liao, Z., Xu, H., Xiao, J., Gong, F.FGF1 improves functional recovery through inducing PRDX1 to regulate autophagy and anti-ROS after spinal cord injury2018https://doi.org/10.1111/jcmm.13566Journal Articlehttps://pubmed.ncbi.nlm.nih.gov/29512938/
Growth factorsGalvao, J., Iwao, K., Apara, A., Wang, Y., Ashouri, M., Shah, T. N., Blackmore, M., Kunzevitzky, N. J., Moore, D. L., Goldberg, J. L.The Krüppel-Like Factor Gene Target Dusp14 Regulates Axon Growth and Regeneration2018https://doi.org/10.1167/iovs.17-23319Journal Articlehttps://pubmed.ncbi.nlm.nih.gov/29860460/
Growth factorsAnderson, M. A., O'Shea, T. M., Burda, J. E., Ao, Y., Barlatey, S. B., Bernstein, A. M., Kim, J. H., James, N. D., Rogers, A., Kato, B., Wollenberg, A. L., Kawaguchi, R., Coppola, G., Wang, C., Deming, T. J., He, Z., Courtine, G., Sofroniew, M. V.Required growth facilitators propel axon regeneration across complete spinal cord injury2018https://doi.org/10.1038/s41586-018-0467-6Journal Articlehttps://pubmed.ncbi.nlm.nih.gov/30158698/
Growth factorsGuo, S., Perets, N., Betzer, O., Ben-Shaul, S., Sheinin, A., Michaelevski, I., Popovtzer, R., Offen, D., Levenberg, S.Intranasal Delivery of Mesenchymal Stem Cell Derived Exosomes Loaded with Phosphatase and Tensin Homolog siRNA Repairs Complete Spinal Cord Injury2019https://doi.org/10.1021/acsnano.9b01892Journal Articlehttps://pubmed.ncbi.nlm.nih.gov/31454225/
Growth factorsSeira, O., Liu, J., Assinck, P., Ramer, M., Tetzlaff, W. KIF2A characterization after spinal cord injury2019https://doi.org/10.1007/s00018-019-03116-2Journal Articlehttps://pubmed.ncbi.nlm.nih.gov/31041455/
Gene therapyStewart, A. N., Matyas, J. J., Welchko, R. M., Goldsmith, A. D., Zeiler, S. E., Hochgeschwender, U., Lu, M., Nan, Z., Rossignol, J., Dunbar, G. L.SDF-1 overexpression by mesenchymal stem cells enhances GAP-43-positive axonal growth following spinal cord injury2017https://doi.org/10.3233/rnn-160678Journal Articlehttps://pubmed.ncbi.nlm.nih.gov/28598857/
Gene therapySmith, D. R., Margul, D. J., Dumont, C. M., Carlson, M. A., Munsell, M. K., Johnson, M., Cummings, B. J., Anderson, A. J., Shea, L. D.Combinatorial lentiviral gene delivery of pro-oligodendrogenic factors for improving myelination of regenerating axons after spinal cord injury2019https://doi.org/10.1002/bit.26838Journal Articlehttps://pubmed.ncbi.nlm.nih.gov/30229864/
Gene therapyLi, Z., Wu, F., Xu, D., Zhi, Z., Xu, G.Inhibition of TREM1 reduces inflammation and oxidative stress after spinal cord injury (SCI) associated with HO-1 expressions2019https://doi.org/10.1016/j.biopha.2018.08.159Journal Articlehttps://pubmed.ncbi.nlm.nih.gov/30551457/
Gene therapyLu, P., Gomes-Leal, W., Selin Anil, S., Dobkins, G., Huie, J. R., Ferguson, A. R., Graham, L., Tuszynski, M.Origins of Neural Progenitor Cell-Derived Axons Projecting Caudally after Spinal Cord Injury2019https://doi.org/10.1016/j.stemcr.2019.05.011Journal Articlehttps://pubmed.ncbi.nlm.nih.gov/31204300/
Gene therapyShiga, Y., Shiga, A., Mesci, P., Kwon, H., Brifault, C., Kim, J. H., Jeziorski, J. J., Nasamran, C., Ohtori, S., Muotri, A. R., Gonias, S. L., Campana, W. M.Tissue-type plasminogen activator-primed human iPSC-derived neural progenitor cells promote motor recovery after severe spinal cord injury2019https://doi.org/10.1038/s41598-019-55132-8Journal Articlehttps://pubmed.ncbi.nlm.nih.gov/31848365/
GlycoproteinsChen, J., Lee, H. J., Jakovcevski, I., Shah, R., Bhagat, N., Loers, G., Liu, H. Y., Meiners, S., Taschenberger, G., Kügler, S., Irintchev, A., Schachner, M.
The Extracellular Matrix Glycoprotein Tenascin-C Is Beneficial for Spinal Cord Regeneration2010https://doi.org/10.1038/mt.2010.133Journal Articlehttps://www.cell.com/molecular-therapy-family/molecular-therapy/fulltext/S1525-0016(16)30860-7
GlycoproteinsLee, J. K., Zheng, B.Role of myelin-associated inhibitors in axonal repair after spinal cord injury2012https://doi.org/10.1016/j.expneurol.2011.05.001Reviewhttps://pubmed.ncbi.nlm.nih.gov/21596039/
GlycoproteinsDong, L., Dong, G., Cao,J., Zhang, J.Association of α2-HS Glycoprotein with Neurogenic Heterotopic Ossification in Patients with Spinal Cord Injury2017https://dx.doi.org/10.12659%2FMSM.904626Journal Articlehttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC5699169/
GlycoproteinsChen, C., Bai, G. C., Hong-Liang Jin, Lei, K., Li, K. X.Local injection of bone morphogenetic protein 7 promotes neuronal regeneration and motor function recovery after acute spinal cord injury2018https://dx.doi.org/10.4103%2F1673-5374.233449Journal Articlehttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC6022460/
NOGO AWang, J. W., Yang, J. F., Ma, Y., Hua, Z., Guo, Y., Gu, X. L., Zhang, Y. F.Nogo-A expression dynamically varies after spinal cord injury2015https://doi.org/10.4103/1673-5374.152375Journal Articlehttps://pubmed.ncbi.nlm.nih.gov/25883620/
NOGO ALiu, G. M., Luo, Y. G., Li, J., Xu, K.Knockdown of Nogo gene by short hairpin RNA interference promotes functional recovery of spinal cord injury in a rat model2016https://doi.org/10.3892/mmr.2016.5072Journal Articlehttps://pubmed.ncbi.nlm.nih.gov/27035338/
NOGO AChen, K., Marsh, B. C., Cowan, M., Al'Joboori, Y. D., Gigout, S., Smith, C. C., Messenger, N., Gamper, N., Schwab, M. E., Ichiyama, R. M.Sequential therapy of anti-Nogo-A antibody treatment and treadmill training leads to cumulative improvements after spinal cord injury in rats2017https://doi.org/10.1016/j.expneurol.2017.03.012Journal Articlehttps://pubmed.ncbi.nlm.nih.gov/28341461/
NOGO AKucher, K., Johns, D., Maier, D., Abel, R., Badke, A., Baron, H., Thietje, R., Casha, S., Meindl, R., Gomez-Mancilla, B., Pfister, C., Rupp, R., Weidner, N., Mir, A., Schwab, M. E., Curt, A.First-in-Man Intrathecal Application of Neurite Growth-Promoting Anti-Nogo-A Antibodies in Acute Spinal Cord Injury2018https://doi.org/10.1177/1545968318776371Clinical Trialhttps://pubmed.ncbi.nlm.nih.gov/29869587/
NOGO AWang, Y., Sun, J. C., Wang, H. B., Xu, X. M., Yang, Y., Kong, Q. J., Shi, J. G.Effects of MicroRNA-494 on Astrocyte Proliferation and Synaptic Remodeling in the Spinal Cord of a Rat Model of Chronic Compressive Spinal Cord Injury by Regulating the Nogo/Ngr Signaling Pathway2018https://doi.org/10.1159/000491959Journal Articlehttps://pubmed.ncbi.nlm.nih.gov/30036869/
NOGO ASchneider, M. P., Sartori, A. M., Ineichen, B. V., Moors, S., Engmann A. K., Hofer, A. S., Weinmann, O., Kessler, T. M., Schwab, M. E. Anti-Nogo-A Antibodies As a Potential Causal Therapy for Lower Urinary Tract Dysfunction after Spinal Cord Injury2019https://doi.org/10.1523/jneurosci.3155-18.2019Journal Articlehttps://pubmed.ncbi.nlm.nih.gov/30902870/
NOGO AXiao, W. P., Ding, L. L. Q., Min, Y. J., Yang, H. Y., Yao, H. H., Sun, J., Zhou, X., Zeng, X. B., Yu, W.Electroacupuncture Promoting Axonal Regeneration in Spinal Cord Injury Rats via Suppression of Nogo/NgR and Rho/ROCK Signaling Pathway2019https://doi.org/10.2147/ndt.s216874Journal Articlehttps://pubmed.ncbi.nlm.nih.gov/31997879/
NOGO ASekine, Y., Lindborg, J. A., Strittmatter, S. M.A proteolytic C-terminal fragment of Nogo-A (reticulon-4A) is released in exosomes and potently inhibits axon regeneration2020https://doi.org/10.1074/jbc.ra119.009896Journal Articlehttps://pubmed.ncbi.nlm.nih.gov/31748413/
OligodendrocytesGensel, J. C., Zhang, B.Macrophage activation and its role in repair and pathology after spinal cord injury2015https://doi.org/10.1016/j.brainres.2014.12.045Reviewhttps://pubmed.ncbi.nlm.nih.gov/25578260/
OligodendrocytesOhri, S. S., Bankston, A. N., Mullins, S. A., Liu, Y., Andres, K. R., Beare, J. E., Howard, R. M., Burke, D. A., Riegler, A. S., Smith, A. E., Hetman, M., Whittemore, S. R. Blocking Autophagy in Oligodendrocytes Limits Functional Recovery after Spinal Cord Injury2018https://doi.org/10.1523/jneurosci.0679-17.2018Journal Articlehttps://pubmed.ncbi.nlm.nih.gov/29793971/
OligodendrocytesFan, H., Tang, H. B., Shan, L. Q., Liu, S. C., Huang, D. G., Chen, X., Chen, Z., Yang, M., Yin, X. H., Yang, H., Hao, D. J.Quercetin prevents necroptosis of oligodendrocytes by inhibiting macrophages/microglia polarization to M1 phenotype after spinal cord injury in rats2019https://doi.org/10.1186/s12974-019-1613-2Journal Articlehttps://pubmed.ncbi.nlm.nih.gov/31699098/